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In damage detection algorithms the use of mode-force error arising from reduced analytical system matrices
precludes the possibility of stiffness damage localization for those elements residing entirely outside the analysis set.
Subsequently, any indication of mode-force error arising from damage appears as a force imbalance in each reduced
degree of freedom due to the erroneous load paths introduced in the reduction process. The result is a smearing of the
otherwise localized nature of the error thereby altering the interpretation of perturbation matrix-based damage
detection results. To address this issue this work seeks to reconcile the inherent dimensional mismatch between finite
element models and incomplete measured modal data by use of a subspace recognition procedure based on the
problem of subset selection. The spatial characteristics of the reduced dynamic residual are assumed to represent a
characteristic signature of a damaged element or set of elements where a signature is defined as the significant vector
basis spanning the reduced residual matrix as defined by a singular value decomposition process. Stiffness damage is
thereby localized by a measure of the subspace intersection dimension of the experimentally measured signature with
analytically regenerated candidate elemental signatures. The analytically regenerated signatures arise from a
mapping of elemental stiffness matrix sets via the transformation procedure used in the reduction process and the
measured modal matrix. Multiple signatures are identified after an orthogonalization of the original target signature
with respect to the most consistent signature in the previous iteration. For damage localization to be possible each
mapping must project a nonnull and unique signature in the analysis set residual. This work is evaluated on damage
simulations of a 155 mm aeroshell and the NASA Langley Research Center eight-bay experimental test bed.
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U, = jthelemental signature
Vv = matrix of right singular vectors
AK = minimum-rank stiffness perturbation matrix
0 = principal angle
A = diagonal matrix of modal frequencies
b = diagonal matrix of singular values
P = modal matrix
; = damaged modal parameter

healthy modal parameter

reduced system matrix

double differentiation

tolerance for transformation matrix null space test

S

f— ——
=
1] Il

R
|

Received 31 August 2005; revision received 14 July 2006; accepted for
publication 19 July 2006. Copyright © 2006 by the American Institute of
Aeronautics and Astronautics, Inc. All rights reserved. Copies of this paper
may be made for personal or internal use, on condition that the copier pay the
$10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923; include the code $10.00 in correspondence with
the CCC.

*Research Assistant, Department of Mechanical Engineering, N207
Engineering Building 1, Houston, TX 77204-4006.

Professor, Department of Mechanical Engineering, N207 Engineering
Building 1, Houston, TX 77204-4006.

71

HE need for highly accurate analytical models of flexible

structures and machinery is required to accurately predict
dynamic performance in lieu of costly experimental evaluation.
Owing to the complexity of these structures, a common modeling
technique is to use the finite element method (FEM). However, it is
often the case that due to design parameter misalignment or more
commonly physics-based under representation, the physical
structure rarely matches the dynamic characteristics of the finite
element model. Recent efforts to address this problem have resulted
in the development and evaluation of algorithmic methods for
structural model refinement. These same algorithms have also
demonstrated capability in approaching the damage localization
problem. Algorithms used to address FEM refinement can be broadly
classified as falling into one of four different approaches: optimal-
matrix updates, sensitivity methods, eigenstructure assignment
techniques, and minimum-rank perturbation methods. Survey papers
providing an overview of these techniques are provided in [1,2]. In
the optimal-matrix update formulation, perturbation matrices for the
mass, stiffness, and/or damping matrices are determined which
minimize a given cost function subject to various constraints. A
typical cost function used is the Frobenius norm of the perturbation
matrix [3]. Typical constraints may include satisfaction of the
eigenproblem for all measured modes, definiteness of the updated
property matrices, and preservation of the original sparsity pattern.
Sensitivity methods for model refinement and damage localization
make use of sensitivity derivatives of modal parameters with respect
to physical design variables [4] or with respect to matrix element
variables [3]. When varying physical parameters, the updated model
is consistent within the original FE program framework, thereby
preserving the original load path. Control-based eigenstructure
assignment techniques determine the pseudocontrol that would be
required to produce the measured modal properties with the initial
structural model [6,7]. The pseudocontrol is then translated into
matrix adjustments applied to the initial FEM. Finally, the
development of a minimum-rank update theory has been proposed as
a computationally attractive approach for model refinement and
damage detection [8]. The update to each property matrix is of
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minimum rank and is equal or less than the number of experimentally
measured modes that the modified model is to match.

An outstanding issue in damage assessment procedures is the
problem of incomplete modal measurement that arises from
vibration measurement testing. The incomplete modal measurement
problem is manifested in two forms, experimental measurement of a
lesser number of modes of vibration than that of the FEM, and modal
test measurements at a subset of the FEM degrees of freedom.
Approaches to practically address the latter problem are to either
reduce the analytical model to the analysis set of degrees of freedom
or to expand the measured modal data to the global set of degrees of
freedom [9]. An observed problem with model reduction is that
reduction introduces additional nonphysical load paths resulting in
smeared residual vectors. An observed problem with mode shape
expansion is that errors introduced in the expansion process may
become significantly large and lead to a false indication of damage.
In this work, a procedure is proposed in which it is assumed the
characteristic vector basis of the residual in the analysis-set
coordinates is the distinct signature of perturbed elemental matrix
sets arising from localized damage [9-11]. The approach identifies
perturbed elemental matrix sets by regenerating candidate elemental
signatures of a FEM and rating the consistency with the
experimentally measured signature in the reduced coordinates.

II. Damage Localization Using Subspace Recognition

The general methodology of the subspace recognition approach is
now described.

Step 1: Reduction of the original model to test degrees of freedom.
In this step, the original FEM mass and stiffness matrices are
dimensionally reduced to the test set of degrees of freedom, resulting
in a test analysis model (TAM). Damping is ignored in this case. In
this study, Guyan, improved reduced system (IRS), and dynamic
reduction are considered. For dynamic reduction, a transformation
matrix is generated for each mode of interest. The results of the
reduction process are the reduced mass and stiffness matrices, K, and
M,, and the transformation matrix 7.

T"TMT =M, )

TTKT =K, )

This results in system matrices approximating the modal response of
the full dimension model but destroys the original load paths created
during the FE matrix assembly process.

Step 2: Updating the reduced model using the minimum-rank
perturbation theory. The initial modeling error associated with the
initial modeling error and that introduced by reduction is removed by
updating using the healthy modal measurements. The result is an
updated reduced model with an eigensolution consistent with the
measured eigendata of the structure in the healthy state. The
minimum-rank perturbation theory (MRPT) can be formulated to
update multiple property matrices simultaneously. The formulation
presented here will assume that the nominal modeling error is
entirely located in the stiffness properties of the structure. The
formulation of the MRPT for updating the stiffness matrix follows.
Suppose that a FEM exists of a structure and is given by

Mi(1) + Kx(1) = f(1) (3)

The experimental mode shapes and natural frequencies of the healthy
structure are used to formulate the eigenvalue problem which is
written as

MéhAh + Kq)h B AKq)h =B (4)

The columns of the dynamic residual B indicate the error between the
model dynamics and the experimental data on a mode-by-mode
basis. The stiffness perturbation matrix A K can be written in factored
form as

AK = BHB” )]

where H is a symmetric, full-rank square matrix. Substituting this
factorization into Eq. (4) yields

BHB'®, = B (©6)

Equation (6) is true if and only if HBT ®;, = I, where I is the identity
matrix. The matrix H is uniquely calculated as

H=(B"®,)"! %)

Substituting this result into Eq. (5) gives the unique minimum-rank
stiffness perturbation matrix as

AK = B(B"®,)"'B” (8)

This represents the basic MRPT formulation. A more advanced
formulation that uses the singular value decomposition (SVD)
instead of the matrix inverse is described in [12].

Step 3: Formulation of the target signature space. In this step, the
characteristic vector space of the reduced dynamic residual due to
damage is extracted using SVD. The reduced dynamic residual is
found with

M, .0, + K., @y =B, 9

The SVD can serve as a rank estimator for matrices which are
corrupted with measurement noise. It can also be used to extract a set
of basis vectors that span the significant subspace of experimental
vector sets. This set of basis vectors is the target subspace of the
dynamic residual. The SVD of the dynamic residual is written as

B, =UZV" (10

where X is a matrix with ordered singular values running along the
principle diagonal. The left and right singular vectors are contained
in U and V and are unitary matrices. The dynamic residual can be
regarded as a summation of p rank-one matrices, where p is the
number of measured modes. These rank-one matrices are scaled by
an associated singular value. The first rank-one matrix represents the
closest rank-one fit to the data contained in the residual. The addition
of the second rank-one matrix represents the closest rank-two matrix.
The marginal increase in the quality of the numeric fit by addition of
subsequent rank-one matrices can be sensed by the magnitude of the
corresponding singular values. Subsequently, the relative impor-
tance of the basis vectors contained in U and V also follow this
scheme. The significant basis vectors in the matrix U representing the
dynamic residual vector space are found by the following
computation of percent normalized singular values:

1(r) =7Z§100" (11

I(r) represents the fractional information retained by the summation
of the first r rank-one matrices. The number of significant basis
vectors is taken as r when I(r) > &, where £ is a user prescribed
tolerance between 0 and 1. The target subspace is the collection of the
significant basis vectors and are grouped together in the matrix U,,,,
where

U = [y up 43 -+ u,] (12)

Step 4: Formulation of elemental signatures. An elemental
signature is defined as the consistent vector space of the projection of
an elemental matrix onto the reduced set of degree of freedom via
reduction transformation and postmultiplication by the measured
modal matrix. The formulation of the jth elemental signature starts
with finding the reduced elemental stiffness matrix of the jth
element.

Kl =TTKIT (13)

where K} = jth elemental stiffness matrix or the jth grouping of
elemental matrix sets. For simplification, the development will
proceed with a signature defined on the basis of a single elemental
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stiffness matrix. The projection of the elemental stiffness matrix onto
the reduced residual is found by performing the SVD operation on
the reduced stiffness element and modal matrix product as shown.

Kl ®,=U,3, VI (14)

The significant basis vectors are grouped together in matrix U2,
where

Ui =[u) Uy uz -+ u,] (15)

where n = rank of K.V, as determined by Eq. (L1). This process
extracts the characteristic vector space in the reduced dynamic
residual associated with a perturbation of the jth elemental stiffness
matrix.

Step 5: Comparing the target vector space with elemental
signatures. The task now is to rate the similarity between the target
vector space and each elemental signature in the FEM. We can base a
range intersection evaluation of the target signature and an elemental
signature by observing the cosines of the principal angles between
the two subspaces [13]. Thus, for the jth elemental signature in the
model, the principal angles are determined from

diag [cos(#)] = SVD(UL,UY) (16)

for j=1,2,3,..., where j is an index from 1 to the number of
candidate elements. The dimension of the range intersection is
defined by s in the following sense:

1=cos(f,)=---=cos(6,) > > COS(H,I) (17

where g= number of measured modes. The above statement implies
that if cos(6;) = 1 then s vectors in U, and U, span an identical
space. In other words, the s vectors represent the same space.
Therefore, the single value used to rate the similarity between the
vector spaces of U, and U, is taken as s in Eq. (17). A perfect
intersection dimension is not encountered because the vector space
of the reduced dynamic residual has a weakly nonlinear dependence
on damage magnitude. In this case we are regenerating an elemental
signature based on a 100% stiffness loss. Therefore, in the event of a
zero intersection dimension, the most likely case, the first term in
Eq. (16) indicates the “closeness” of the two most aligned vectors and
is hence taken as the scalar measure of space consistency. The
original formulation of the subspace intersection dimension
presented in [13] requires that QR decompositions be performed
on the matrix arguments to extract orthogonal basis vectors before
the SVD operation. In our case, this step is not required because the
matrix arguments are already an orthogonal basis vector set.

Step 6: Create new target vector space. Now that an elemental
signature that best matches the target vector space has been identified
in step 5, the next step is to define a new target vector space. The
pseudoinverse is used to eliminate the space spanned by the first best
signature from the target vector space. The step assures that in the
next iteration, the component of the target vector space that has been
matched with an elemental signature will not be matched again. The
new target vector space is defined as

U = U, - UiX (18)
with
X = (U;"U:)'UTUE, 19)

In Eq. (18) Uj is the best matching signature in iteration k = 1. The
next step is to find the elemental signature which best matches the
vector space of the new target space defined in Eq. (18). The
signature identified in the previous iteration is not considered for
matching in subsequent iterations. The entire process is repeated
until the best matching elemental signature is near orthogonal to the
target space. The result of this process is a set of elemental signatures
which span the vector space of the original target vector space. The
associated elemental stiffness matrices are considered strong
possible locations of damage.

III. Evaluation of Reduced Models for Elemental
Signature Recognition

Two important properties of reduced models raise issues in the
subspace recognition algorithm. The first is that an elemental
stiffness matrix may reside in the null space of the transformation
matrix. That is, K. € null(7T7). This property is a result of the
particular selected analysis set. Two implications arise. The first is
that a stiffness perturbation in elements such as these will not induce
amode-force error in the reduced dynamic residual matrix in Eq. (9).
The second implication is that calculation of the elemental signature
with Egs. (13) and (14) will be trivial. The second property is the
possibility that two or more elements produce collinear signatures.
Collinear residuals arise from two separate operations in the
subspace recognition algorithm. The first operation is the reduction
of the elemental stiffness matrix by Eq. (13). In certain cases,
multiple reduced elemental stiffness matrices span identical space.
This will guarantee collinear signatures regardless of the modal
matrix postmultiplication. The second operation is postmultiplica-
tion of the reduced elemental stiffness matrix with the modal matrix
in Eq. (14). Because the reduced stiffness elemental stiffness matrix
is rank deficient, the possibility exists for collinear residuals to arise
from the space transformation in the left-hand side of Eq. (14). The
primary implication is that the elemental signature which best
matches the target vector space can no longer be uniquely considered
the sole location of damage if the signature has a collinear alias. In
this case, one is forced to consider all other signatures in a collinear
signature cluster as possible locations of damage. Before
implementation of the subspace recognition algorithm, one must
perform a pretest evaluation of the reduced model for null-signature
elements and for collinear signatures. In addition, in the post-test,
predamage assessment stage, one must also perform a survey for
collinear signatures due to postmultiplication of the reduced
elemental stiffness matrix with the modal matrix.

A. Transformation Matrix Null Space Test

Given a selection of an analysis set, the transformation matrix and
the set of elemental stiffness matrices, the elemental stiffness
matrices which fail the following criteria are considered members of
null(T7T)

|TTK}|< o (20)

The elemental stiffness matrices that fail this criterion cannot be
transformed into the reduced coordinates. For completeness, one
may consider a range of tolerance values for identification of those
elements which may produce a relatively small magnitude residual.

B. Collinear Signature Test

Frequently, due to structural symmetry and analysis-set location,
multiple stiffness elements may produce similar eigenstructure
sensitivities which are difficult or impossible to distinguish. In
previous research, it has been shown that multiple perturbed stiffness
elements can produce collinear mode shape sensitivities due to
sensor location [14]. However, the issue regarding collinearity in this
study is the collinearity of residuals produced by the combination of
reduced elemental stiffness matrices and experimental modes. The
sole basis of similar eigenstructure sensitivities alone will not
guarantee that those stiffness elements will exclusively produce
collinear signatures. The evaluation of reduced models for collinear
signatures will be divided into two stages. In the pretest analysis, one
must identify clusters of stiffness elements which produce collinear
residuals as a result of having identical range in reduced coordinates.
This will happen if multiple reduced elemental stiffness matrices can
be rotated into each other. To determine if this is the case, the
orthogonal procrustes problem is solved [13]. The formulation starts
with

I1;; = min [, — T; 0| 21

with
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0To=1 (22)
T, =TTKT (23)
I, =T"KT (24)
i#j=1273.....n, (25)

where n, is the number of candidate elements fori, j = 1,2,3,...,.
If there exists a matrix Q which forces I1;; to zero, then TTKf T and
TTKJ‘-’ T span identical space. Practically, the designation of
collinearity should be established for a value of Eq. (21) to near
machine zero. This also forces each column of the elemental
signature found in Eq. (14) to be collinear given any set of
experimental mode shapes. The optimal Q is found with the
following SVD-based procedure:

C=TIT; (26)
c=uxv’ (27)
o=Uv" (28)

The matrix Q will minimize Eq. (21). The pretest analysis is therefore
to analyze the set of elemental stiffness matrices for range similarity
in the reduced coordinate system. All pairs of elemental stiffness
matrices in reduced coordinates that result in a value near machine
zero for Eq. (21) are considered collinear aliases of each other. The
post-test, predamage assessment analysis is dependent on the
measured modal matrix. Before, elemental stiffness matrices which
span identical space in the reduced coordinate system were
identified, and it was concluded that the signatures will also be
collinear regardless of the projection onto the experimental modal
matrix. However, when the reduced elemental stiffness matrices are
projected onto the experimental modal matrix, the potential arises for
additional elements to produce similar signatures on a mode-by-
mode basis. To assess the similarity between the dynamic residual of
two elemental stiffness matrices, the following modal assurance
criterion (MAC) value is calculated

Xf, = MAC(T'¢,. ;) @

where ¢, = pth test mode. Two residual vectors are considered
collinear when the MAC is greater than some specified tolerance near
unity. The case may arise where stiffness elements produce collinear
residual vectors for only a subset of the total residual vectors while
other residuals may be distinguishable. Full spectrum collinearity is
required for the resultant signatures to be indistinguishable. For
instance, if stiffness elements 1 and 2 produce collinear residuals for
modes 1,2, 3,4, butnot 5, then elements 1 and 2 can be distinguished.
However, if all five residuals are collinear, then elements 1 and 2 are
indistinguishable. Collinear elemental signatures are a less severe
limitation to damage localization than stiffness elements which
reside in null(77). The limitation is that a signature which best
matches the target vector space no longer uniquely implies its parent
element as damaged. It also implies all other elements with collinear
signatures as possible locations of damage.

IV. Example Structure 1: 155 mm Aeroshell

The 155 mm aeroshell is modeled in an FEM software package
with an aluminum material and contains 864 shell elements and a
total of 5328 global degrees of freedom. An analytical damage
scenario is created by perturbing the modulus of elasticity of an
unmeasured element. The aeroshell model, coarse and fine analysis

fixed

y- measurements:  Analysis Set 1
z- measurements:  Analysis Set 1
y- measurements:  Analysis Set 2
z- measurements:  Analysis Set 2

y
E-65

Fig. 1 155 mm cantilevered aeroshell.

sets of degrees of freedom and a damage location, E-65, are shown in
Fig. 1.

In this case damage is defined as a 50% loss in elastic modulus for
stiffness element 65. Only Guyan model reduction is considered in
this example. There are two analysis sets of degrees of freedom
shown in Fig. 1. The fine measurement set includes 72 radial
measurements while the coarse set includes 36 radial measurements.
The nominal reduced stiffness matrix was refined with MRPT using
the first two flexible modes which were the first bending mode and
the orthogonal first bending mode. In each of the two reduced models
no elemental signatures produced collinear aliases in the pretest or
predamage assessment stages. In addition, no elements in either
reduced model resided in the null space of the transformation matrix.
Each elemental signature was created on the basis of the first two
flexible modes from the damaged structure of the same type as in the
healthy refinement. The tolerance values for the selection of rank of
elemental stiffness matrices were selected such that the target
signature and each elemental signature were single column vectors.
In addition, the algorithm was run until each elemental signature was
assigned a principal angle rating. The results of the damage detection
assessment for 864 iterations are presented in Figs. 2 and 3.

The algorithm was able to identify the correct damaged element in
the first iteration with both analysis sets. Moreover, subsequent
elemental signatures in analysis set 1 were localized near the damage
area despite orthogonalization of the target signature with respect to
the previously best matching signature. This arises from an imperfect
removal of the damaged element signature from the original target
signature due to the weakly nonlinear dependence on damage
magnitude. The numeric values of the principal angle alignment of
each damage detection study for the first 15 iterations are presented in
Fig. 4. The first iteration identifies the best signature, rates its
alignment to the target space, modifies the target, searches for the
next best signature, and so on. The corresponding element number is
shown atop each bar. The quantity in radians defined by 6, where
s =1 of Eq. (17) is presented at each iteration.

The results of analysis set 1 strongly indicated the correct damage
element number 65 in the first iteration. Subsequent elemental
signatures rated closer and closer to an indication of orthogonality. In
analysis set 2, the correct damaged element was identified in the first
iteration. Notice that the rate of change with respect to the iteration of
the principal angle alignment is a strong indicator of the convergence
of the algorithm. For analysis set 1, it seems that significant signature
matching is occurring after the first iteration. In analysis set 2,
however, it appears that elemental signatures are modeling
incoherent modeling errors and slight signature vector space
deviations due to weak dependence on damage magnitude.

V. Example Structure 2: NASA Eight-Bay Truss

The eight-bay hybrid-scaled truss used in this investigation was
part of the dynamic scale model technology program at NASA
Langley Research Center [15]. Among other studies, a complete
analytical and experimental analysis of this truss was performed
providing arealistic test bed for structural damage localization/extent
algorithms [16]. The truss configuration used in this example was
cantilevered and instrumented with 96 accelerometers to measure all
three translational degrees of freedom at each of the 32 unconstrained
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Fig. 2 155 mm cantilevered aeroshell. Elemental signature principal angle ranking for analysis set 1: 72 degrees of freedom; nominal model refinement:

modes 1 and 2; damage detection: modes 1 and 2.
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Fig. 3 155 mm cantilevered aeroshell. Elemental signature principal angle ranking for analysis set 2: 36 degrees of freedom; nominal model refinement:

modes 1 and 2; damage detection: modes 1 and 2.
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Fig. 4 Damage case signature match: a) 72 degrees of freedom TAM; b) 36 degrees of freedom TAM.

nodes. A schematic of the truss is shown in Fig. 5 with different
damage cases highlighted and a reduced sensor set shown. The first
five global modes of vibration were identified in each modal survey.
In all, 15 different damage situations were tested and experimental
data were made available to researchers. In 13 cases, A, C-N, one
truss member was removed. In case O, two struts, one longeron, and
one diagonal were removed. In case P, one undamaged batten was
replaced with a buckled strut. With the luxury of having all FEM
degrees of freedom instrumented, any reduced set of measurements

can be obtained by simply ignoring certain measurements. The
instrumented nodes selected minimize the number of damage cases
in which an affected degree of freedom was sensed.

A. Transformation Matrix Null Space Testing

The null space of the transformation matrix was tested for Guyan,
IRS, and dynamic reduction. The minimum allowed value of p in
Eq. (20) was set at le-10 and again at le-5 and le-3 for
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Fig. 5 NASA eight-bay damage cases and reduced sensor set.

completeness. For each value of p the Guyan reduction method
flagged elements 7 and 9 as being collinear aliases, whereas IRS and
dynamic reduction methods did flag any elements as being collinear
aliases. Elements 7 and 9 are indicated in Fig. 5. This indicates that
stiffness elements 7 and 9 reside in the null space of the Guyan
transformation matrix. The Guyan reduction method cannot reduce
these elemental stiffness matrices and as a consequence, damage in
these elements cannot be detected. However, the IRS and dynamic
reduction methods for all test modes can sense damage in these
elements.

B. Collinear Signature Testing

The pretest analysis developed in Sec. III was performed using the
IRS and Guyan reduction methods. Only Guyan reduction produced
reduced elemental stiffness matrices with identical range according
to Eq. (21). It is not possible to know a priori any of the dynamic
transformation matrices if the transformation is based on the
damaged experimental natural frequency. The graph in Fig. 6 shows
all pairs of stiffness elements with identical range in reduced
coordinates. Each grid line corresponds to a stiffness element while
an asterisk marks a pair of elemental stiffness elements that have
identical range in reduced coordinates. These pairs of elemental
signatures minimized Eq. (21) to near machine zero. Before we
construct a single mode-dependent elemental signature, we know
that pairs of signatures indicated above are guaranteed to produce
collinear signatures when using Guyan reduction.

The post-test, predamage assessment analysis was performed with
modal data from cases O and J. Collinear residuals were identified
using Eq. (29) with a cutoff MAC of 0.90. These pairs produced
collinear residuals for all five test modes as shown in Fig. 7. The
predamage assessment for the Guyan reduced model revealed no
additional collinear residuals beyond those identified in the pretest
study.

Stiffness Elements with Identical Range in Reduced Coordinates

Element Number

Element Number

* - Guyan reduction

Fig. 6 Pretest screening for collinear signatures.

Stiffness Elements with Collinear Dynamic Residuals

i

40

ﬁ

Element Number

i

10 20 20 40 50 &0 70 80 90 100

* - Guyan, Dynamic reduction Element Number

¢ - IRS reduction
Fig. 7 Post-test, predamage assessment screening of collinear
signatures.

Stiffness elements 7 and 9 were excluded from this survey because
no reduced coordinate information could be produced with Guyan
reduction. Dynamic reduction created pairs of collinear residuals
exactly the same as those given by Guyan reduction. The IRS method
caused stiffness elements to produce collinear residuals that were not
predicted in the pretest analysis by the Guyan model reduction study.

C. Informed Damage Detection Results

The signature recognition algorithm was executed on damage
cases O and J. The results are shown in Figs. 8 and 9 for 15 iterations
and three reduction methods. Case O is the two-member damage case
in which element nos. 81 and 73 were removed. Case J involved the
removal of member no. 58. As the matching of the target vector space
becomes complete, the principal angle rating indicates an orthogonal
alignment of the target and elemental signature. The damaged
elements are identified when the signature rating approaches
orthogonality to some constant.

A firstlook at the results of case O seems to indicate a split decision
on the location of damage. That is, the Guyan-based method
indicated elements 73 and 81 to be damaged, whereas IRS indicated
81. The dynamic-based method indicated elements 60 and 81 as
damaged. However, investigation of the collinear pairs in Figs. 6 and
7 indicate that elements 60 and 73 are collinear aliases of each other
for Guyan and dynamic reduction. We can now be confident that the
three approaches are not split in damage localization but that the
vector space of perturbed stiffness element 81 and the common
vector spaces of perturbed elements 60 and 73 are strongly
represented in the target vector space. When two elements have
collinear aliases, in theory they have equal principal angles.
However, due to measurement noise and computation resolution,
they will always be slightly different. In the case of using dynamic
reduction, element 60 had a slightly larger numerical value than
element 73 and was thus chosen. With the space spanned by
element 71 (or 60) removed from the target vector, the remaining
space is used to identify element 81. So essentially there are two
candidates for damage as indicated by the Guyan- and dynamic-
based methods. The informed damage localization result identified
the correct two damaged members for case O. This example shows
the importance of performing the initial collinearity study.

In case J, all three reduction methods strongly indicated a collinear
alias of the true damaged element. The collinear alias for all three
reduction methods for stiffness element 71 is the true damaged
element 58. This conclusion cannot be made without a study of
signature collinearity for this model. The fact that stiffness
elements 7 and 9 could not be reduced with Guyan reduction did not
hinder the performance of the algorithm in these cases.
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Fig. 8 Case O signature match: a) Guyan reduction; b) IRS reduction; ¢) dynamic reduction.
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VI. Summary and Conclusions

A method for damage localization using subspace recognition
with incomplete modal measurements was presented. The
characteristic mode-force error in the reduced dynamic residual
resulting from the corruption of load path information was regarded
as a signature of a stiffness element. It was observed that two aspects
of reduced models must be accounted for in the algorithm. Firstis the
inability of certain transformation matrices to project elemental
stiffness matrices in the reduced coordinates, and the second is the
nonuniqueness of reduced dynamic residuals. Methods for
evaluating these two aspects of reduced models were proposed to
assess their suitability for damage localization using subspace
recognition. A simple transformation matrix null space test was
developed to identify elemental stiffness matrices that cannot be
reduced to the analysis set of coordinates. Two reduced dynamic
residual collinearity tests were developed. The first test identified
collinear residuals by finding elemental stiffness matrices with
identical range in the reduced coordinates. Evaluation of a reduced
model before the onset of modal testing will provide a reasonable
assessment of identifiable stiffness elements. The second test found
collinear residuals by an exhaustive comparison between generated
residuals using the modal assurance criterion. The elements
identified in the second test were shown to identify stiffness elements
not identified in the first test.

The elemental signature recognition procedure was applied to a
155 mm aeroshell and two experimental damage cases of the NASA
eight-bay model using three model reduction methods (Guyan,
improved reduced system, and dynamic). The 155 mm aeroshell
study included a fine and a coarse reduced measurement set for
damage assessment. In either case, no collinear elements were
identified at any stage of the damage assessment and no elemental
stiffness matrices produced null signatures. The aeroshell model
included over 5 K degrees of freedom and was able to localize
damage using a minimum of 36 degrees of freedom in the test
analysis model based on the Guyan model reduction technique. The
damage detection effort was based on assuming that only two flexible
modes of vibration are measured in the healthy and damaged states.
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In the reduced model assessment of the NASA eight-bay structure, it
was found two elemental stiffness matrices resided in the null space
of the Guyan transformation matrix. Therefore, perturbation in the
stiffness of these two elements would not produce a residual force
imbalance in reduced coordinates, making damage localization for
these elements impossible. It was also determined that multiple
clusters of elemental signatures were collinear. There existed
different sets of collinear signatures depending on the model
reduction method used. The results of the damage localization
algorithm based on three reduction methods appeared to give split
results in the first damage case and erroneous results in the second. It
was found, upon referencing identified collinear signatures, that the
split case was indeed indicating two different elements with collinear
signatures in reduced coordinates. The conclusion was that there was
not a split indication of the elemental signature present in the
damaged experimental data. The second case study simply indicated
a collinear alias of the true damaged element. These studies support
the conclusion that the performance of the subspace recognition
approach for damage localization can correctly identify the correct
damaged elements or, if any, the associated collinear. This ability,
however, is dependent on the damage level and the coherency of the
residual vector space within measurement capabilities of the selected
sensor set. When damage is isolated to a member that does have a
collinear alias, damage can only be narrowed down to the member
and the family of collinear aliases. Indeed, the assumption of damage
being accurately represented by a localized perturbation to a stiffness
matrix model is valid for a large class of damage scenarios but is not
an exhaustive approach.
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